Event-Based Through-Life Cost Management

Robert A. Butler TFD Group

Paper Presented at

Overview

- Cost modeling methods
 - For system-level estimation, budget forecasting and engineering decisions
 - Recent advances in activity-based costing and eventbased methods
- Methods follow use
- Problems with mixed methods
- Event-based cost modeling
- From through-life costing to budget forecasting

Cost Modeling Methods

- Spreadsheet calculations
 - Chart of accounts
- Models based on parametric equations
- Engineering cost models

Spreadsheet Methods

- Flexible, fast and simple (sometimes)
- Change to meet each new requirement
- Conceptual errors
- Usually one-time devices
- Normally only used for short-term costs
- Emphasize the organization of costs (chart of accounts or cost breakdown structure)
 - By budget category
 - By time increment

Models Based on Parametric Equations

- Appear simple to the final user
- Are actually very complex
 - Require extensive research to develop parameters
- Theory often suspect
 - Extrapolation is risky
 - Best at forecasting if you intend to repeat past mistakes, i.e., when context doesn't change
 - Assumes that observed systems belong to the same "class" as the system under study
- Cannot be used for design
 - Conclusions are opposite of intended: e.g., weight

Engineering Models

- Depend on hardware characteristics
 - Failure rates, average repair time, unit prices...
- Respond to programmatic data
 - Fleet size, deployment, op tempo...
- React to support structures and performance
 - Echelons, repair fractions, delay times...
- Can be used to study cost impact of
 - Hardware characteristics
 - Programmatic plans
 - Support structures
 - Support performance

Recent Methods

- Activity-based costing (ABC)
 - Reacts to the desire to base budget requirements on operations rather than historical precedent
 - Probably originated with zero-based budgeting initiatives

- Drawbacks
 - Lack of repeatability
 - Labor-intensive nature of the analysis

Recent Methods 2

- Event-based analysis
 - Originated on LPD 17 ship competition
 - Requirement to distinguish between very similar main propulsion engines
 - No time for parametrics, which couldn't have distinguished the differences in any case
 - Extended earlier ideas about isolating "maintenance events"
 - To account for both scheduled from unscheduled maintenance actions
 - By decomposing failures into failure modes with different resource demand implications

Method Follows Use

- Acquisition cost analysis
 - Method: Parametrics
 - System-level focus
 - Emphasis on time and budget categories
- Budget forecasting
 - Method: Spreadsheets
 - More recently, activity-based costing (ABC)
 - Activity-level focus (budget line item holder)
 - Emphasis on time and budget categories

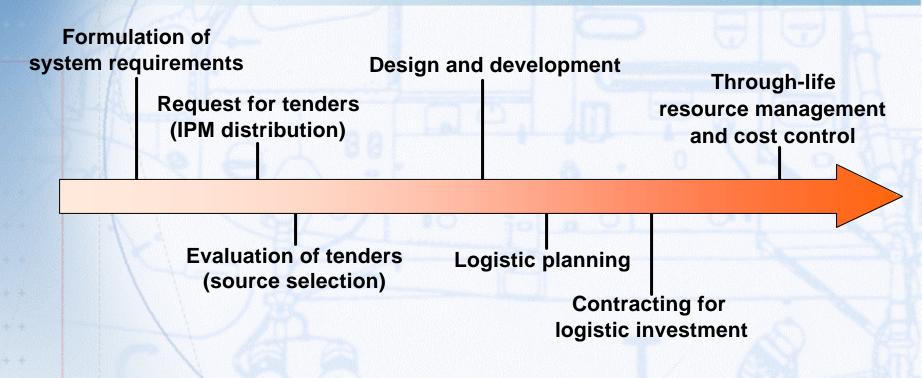
Method Follows Use 2

- Engineering design
 - Method: Simple accounting or engineering models
 - Subsystem and lower focus
 - Emphasis on net present value
- Logistic resource requirements
 - Method: Rich, data-intensive engineering models
 - Program focus
 - Emphasis on mean quantities

Mixed Analytical Methods

- The use of cost estimates persists throughout the life of a system
- Each analytical method appears to have advantages for a specific type of decision
- But all uses of analysis are linked to each other
 - For specific events (e.g., milestones)
 - For specific decisions (e.g., choice of tenderer)
- Different uses of analytical methods are also interwoven in time
 - Midlife upgrades impose acquisition decision processes on the management of an in-service system

Problems with Mixed Analytical Methods

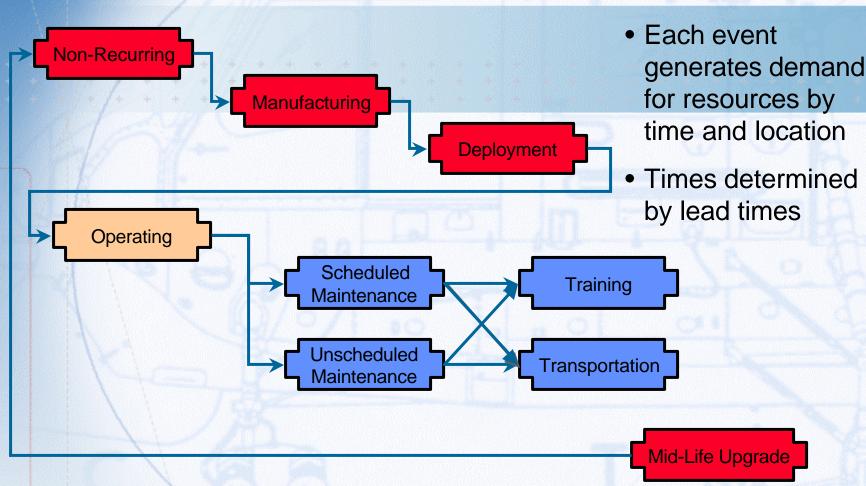

- None of the methods communicates either inputs or outputs to the other methods
- Results:
 - Analytical effort is dominated by data collection, organization, cleansing and formatting
 - Inconsistency of inputs means costly repetition of the data collection tasks
 - Inconsistency of methods (and data sources and data treatment) leads to inconsistency of outputs
 - Decisions based on analysis are, in turn, inconsistent
 - Decision-makers soon lose confidence in the utility of any analytical process

An Enabling Solution

- Unified or consistent methods that avoided data steps would
 - Save significant labor devoted to data collection
 - Put analytical results in the hands of decision-makers sooner
 - Preserve consistency of data supporting decisions
- To address all uses requires special capabilities for a cost methodology
 - Speed
 - Accuracy
 - Modeling response to changes in system attributes
 - Modeling response to policy variables (variables in the decision space of system managers)

MAAP is Useful Throughout the System Life Cycle

- Event driven TOC
- Use across Life Cycle


Event-Driven Cost Analysis with MAAP

- An engineering model whose costs are influenced by changes in system attributes
 - Reliability
 - Maintainability
 - Production or purchase cost
- These attributes, in turn, influence
 - Operational capability
 - Support effectiveness
 - Logistic requirements
 - Cost of production, support and operation
- -- when they are combined with a description of the operating and support regime in which the system will be (is) fielded

The MAAP Event Analysis Engine

- An event is a cost-generating element of the "future history" of any hardware component
- The component's future history is described by a variety of events:
 - Non-recurring and manufacturing events cause systems to be created and deployed
 - Operating events cause systems to acquire operating hours at sites in time intervals
 - Resulting component operating hours and the passage of time give rise to maintenance events, which, in turn give rise to training, transportation and other types of events
- Events result in the consumption of resources by location and time – which in turn requires their acquisition (in prior time periods), transportation to the location of use and maintenance or replacement after use

How MAAP Computes Whole Life Costs

Database Design and Maintenance are Crucial

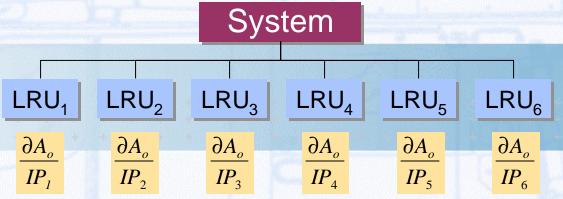
- To achieve accuracy, large amounts of data will be involved
- To achieve quick and responsive analytical capability, the data must be
 - Available
 - In the right form and format
 - Defined correctly for the specific analytical purpose
 - Easily updated
- These requirements imply a database
 - Whose establishment represents a significant investment
 - Correctly designed for analytical use
 - Embedded in the decision-maker's data infrastructure

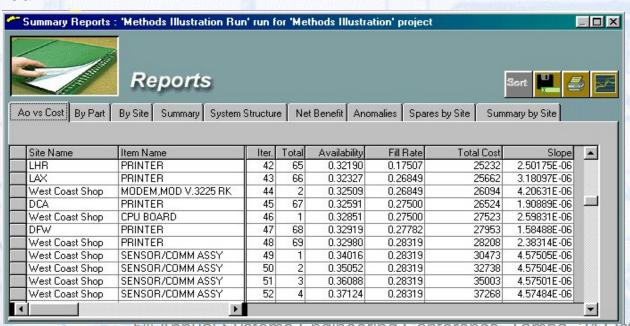
TFD Group **Events Define** A component is a member **System** of a hardware breakdown Resource Requirements structure **Hardware** Each activity type is described Component by an instance of an event Data about resources are kept in Non-Pocurring Event **Resource Libraries** Manufacturing Event 3 Skills **Tools Shops Parts** Operating Event Maintenance Event 1 Type (PM/CM/Opn) Frequency (by Hr, Msn, Yr) Duration (: e.g. Mct) **Echelon** (LOR constraint) **Resource Costs** Courses **Books Resource Use** The cost of each event is a function of the resources it consumes **Resource Type** Resource ID **Software Number Units** % of Duration **Total Ownership Cost by** Probability of use

ms Engineering Conference, Tampa, 24 October 2002

Event Type, Place, Resource and Time

From Whole of Life Cost Analysis to Budget Management


- Resource-to-readiness mapping: how do costs create readiness?
- Accuracy required for both short- and mediumterm estimates
- Quick turn-around for estimates (minutes or hours, not days)
- "What-if?" responsiveness
- Optimization would be nice...
 - Which resources are causing costs
 - Which resources can be most easily divested
 - What sacrifice in operational capability is implied by a budget cut


How Optimization Works Marginal Analysis

Step 1: Choose item with highest ratio

Step 2: Recompute ratio for that item

Step 3: Repeat steps 1 and 2 until target reached

The Multi-Resource Availability-for-Cost Curve

The Decision-Maker's Menu Data Underlying the Multi-Resource Curve

Year	ResourceName	UnitName	Delta	Cost	DeltaPerDollar	RunningCost	Ao <u></u> ▲
2001	Assembly E4 type 1	Operating Unit 01	0.0069916613	44948.75	1.555474E-07	333618124.09	0.6927041456
2001	Assembly E6 type 2	Operating Unit 03	0.0496814467	319805.59375	1.553489E-07	333937929.68	0.6931743280
2001	Assembly E4 type2	Operating Unit 03	0.0464487146	299722.09375	1.549726E-07	334237651.77	0.6936204825
2001	Assembly E3 type 3	Operating Unit 03	0.0488565757	316171.4375	1.545256E-07	334553823.21	0.6940473056
2001	Assembly E4 type2	Operating Unit 01	0.0463056126	299722.09375	1.544952E-07	334853545.30	0.694369629
2001	Assembly E5 type 2	Operating Unit 03	0.0560656698	363415.4375	1.542743E-07	335216960.74	0.6949259358

- To reduce costs, back down the curve (I.e., move back up the list of resources)
 - Until the running cost has been reduced to the new budget level
- This provides the response that minimizes the operational sacrifice

Conclusions

- Mixed methods in current use represent traditional practice
 - Analysts know and believe in the methods
 - Decision-makers have learned to use particular methods and suspect all others
- Traditional methods were perfected before the recent emphasis on whole of life costs
- They do not satisfy the requirement to provide continuous, consistent decision data
- Event-driven methods, coupled with appropriate databases can
- MAAP is an example